
POOL-ORA approach to offline
calibration/alignment (Draft)

May 30, 2005

1 Introduction

The tabular representation of data in a relational database is fundamentally
different from the networks of objects used in object-oriented application.
This difference is the so-called object/relational paradigm mismatch[3]. Ob-
ject/Relational Mapping(ORM) is the automated persistency of objects in a
domain application to the tables in a relational database. In essence, ORM
works by transforming data from one presentation to another.

POOL[1] is the LHC object persistency framework in C++. There are
two implementations of the persistency layer: ROOT/IO and RDBMS. In the
RDBMS implementation, Object Relational Access(ORA) is the middleware
in the persistency layer that manages the ORM. POOL-ORA implements
ORM rules to bridge the object and the relational world. POOL uses XML
as the format for describing the mapping metadata. If no user-defined XML
mapping metadata is present, the default mapping rules will take effect.

POOL-ORA is a non-intrusive object persistency solution: users aren’t
required to follow specific rules when designing persistent classes thus it in-
tegrates smoothly with most new and existing applications and don’t require
disruptive changes in those application; users aren’t required to design the
database schema either since it is automatically generated by the ORM.
POOL uses SEAL reflection[2] for interaction between persistency layer and
transient application at run time. Reflection is the ability of the object to
see the layout of itself at run time.

1

The following sections explain the POOL-ORA approach for CMS offline
calibration and alignment data in a top-down fashion: from the object model
to the database.

2 software process and maintenance

At build time, dictionary files are generated from header files of the desired
objects, just as in POOL ROOT/IO object persistency which is used for the
CMS event data.

At run time, the user asks for these objects and POOL delivers them. The
application uses ORA through the generic POOL storage service interface
specifying the storage type as “POOL RDBMS”. The users are not aware of
the ORA machinery. The dictionary library is loaded for reflection, just as
in POOL ROOT/IO.

The interface and the machinery for the conditions data which uses RDBMS,
and the event data which uses POOL ROOT/IO is the same. There is no
maintenance overhead of the conditions data with respect to the event data
at the software layer.

3 Transaction model and caching

3.1 Transaction and first level caching

POOL has a well-defined transaction model. It distinguishes application and
database level transactions. There is a first level in-memory cache attached
to the application level transaction. The transactional-scope object identifier
is the pool::Ref. The first-level cache is mandatory and can’t be turned off.
Two lookups using the same object identifier in the same session from two
concurrently running database transactions result in the same object instance
in the object cache.

3.2 Possibility and benefits of the secondary caching

The second-level cache sits between the domain application and the database.
It makes data retrieved from the database in one application visible to an-
other application. Since it caches the data across the application boundary,

2

it is also known as the process-scoped or cluster-scoped cache. In contrast to
the first-level cache, the second-level cache stores database states, i.e. byte-
stream, instead of navigable persistent instances. The object identifier in
the second-level cache is different from that in the first-level cache because it
should have a lifespan longer than a process and can be replicated in different
machines in a cluster. The so-called reference data, which is rarely updated
and referenced by many instances of other classes,is an excellent candidate
for second-level caching and any application that uses reference data heavily
will benefit greatly if that data is cached.

Though currently not providing a second-level cache, POOL implements
long-lived object identifiers, pool::Token, which makes second-level process
or cluster scope caching possible.

4 Offline calibration and alignment data model

For CMS offline calibration and alignment software, the proposed objects are
shown in the Appendix. These objects are seen by calibration and alignment
applications and required to be persistable, in other words, can be stored as
tables in the database.

The interval of validity (IOV) and the IOV metadata objects, which are
responsible for managing and ensuring the data validity and conditions, are
part of the data model. These objects are hidden from the physics applica-
tions but are nevertheless required to be persistable.

In the POOL-ORA approach, the transient object model in the appli-
cation drives the database data model. The designers of the object model
don’t need to know the tabular representation of the data in the database.
The database schema is automatically created from the definitions of the per-
sistable objects. How POOL-ORA achieve this is described in the following
section.

5 ORM and offline database schema

5.1 ORM rules

The database data schema is defined by the application object model. The
database schema is automatically generated by object relational mapping in

3

POOL following the ORM rules as the following:

• basic class mapping and object identifier

The rule for mapping basic classes, which contain only primitive data
member and no referencing and inheritance relationships with other
classes, is a simple “one table for every class” for POOL-ORA. The
object id can be “native” which means that it is generated by POOL
internally or it can be mapped to a primary key column of an existing
table. The second case is useful in handling legacy relational data.

• embedded classes
A class embedded in another class has no database identity. The per-
sistent state of the embedded class is a subset of the table row of the
owning class.

• class inheritance mapping
There are three different approaches to representing an inheritance hi-
erarchy:

1. One table per concrete class
Discard polymorphism and inheritance, each concrete class is mapped
to a table.

2. One table per class hierarchy
Each class hierarchy is mapped to a table using a type discrimi-
nator column to hold type information. The relational model is
denormalized.

3. One table per subclass
The inheritance relationships are represented as relational foreign
key associations. Every subclass that declares persistent proper-
ties has its own table. Unlike the one table per concrete class
strategy, the subclass table contains columns only for each non-
inherited property along with a primary key that is also a foreign
key of the superclass table.

The default rule is “one table per concrete class”.

• association mapping
The entity association mapping is unidirectional – the behavior of a

4

non-persistent instance is the same as the behavior of a persistent in-
stance.

5.2 Schema evolution and ORM versions

In the ORA approach, object data are stored/retrieved following the SEAL
dictionary information and then finding the corresponding entries in the OR
mapping files. The ORM is versioned and the version is specified in the map-
ping file. The ORM version is stored together with the object table. Many
schema evolution cases can be treated transparently through this mechanism.

Changing in the transient shape of the object is defined by the object
header file through the dictionary which has no effect on the database schema.
Changing in the mapping rules, thus the database schema, is traced and
controlled by the XML mapping file and the versioning of the mapping.
Since the mapping is stored together with the objects one can switch between
underlying schemas for the same objects transparently.

5.3 Number of tables for CMS calibration and align-
ment data model

The number of tables need to be managed depends on the object data model
and the mapping rules applied to the model, in most cases is “one table per
class”, plus several tables of overhead for object management.

Take the calibration and alignment data model for example. There are
mainly three persistable classes in the alignment task: Alignments, Geom2index
and IOV. These classes contain non-trivial data structures such as maps,
maps of int to vector of strings etc. By applying the default mapping rules,
the alignment data model results in 7 tables plus 8 constant overhead of
POOL container and mapping management tables. Considering the calibra-
tion objects, as shown in the Appendix, has a similar structure and share the
IOV object with the alignment, one adds 5 tables for the calibration object
which would make 20 tables sufficient for rudimental offline calibration and
alignment tasks.

In a more elegant model, one might want to add metadata, such as tag,
version, etc, to manage the IOV objects which would add 2 or 3 tables more
for this purpose. However, it is possible that this kind of metadata infor-

5

mation will be managed by the metadata system rather than the calibration
and alignment system.

By choosing non-default mapping rules, one might get even less number
of tables.

5.4 Development processes and ORM toolsets

POOL-ORA applications can be run with default ORM rules without relying
on user-customized mapping rules. However, for complex object model and
sychronisation with legacy pure relational data, external mapping tools are
usually required by the user. POOL-ORA comes bundled with a set of tools.

In the “Top down” development scenario where one starts with existing
transient data model and complete freedom with respect to the database
schema, tools are provided to create a mapping document manually or auto-
matically from domain application source, then use another tool to generate
the database schema.

In the other direction, tools for generating mapping documents from a
POOL-ORA database schema are available. While tools for generating map-
ping documents from a legacy database schema are under development.

5.5 Online and Offline database data transfer

POOL-ORA based tools will be needed to extract and transfer the data from
the online to the offline database. Since the OR mapping in POOL is driven
by XML files, the same XML files will drive the online to offline transfer.

It is forseen that the offline applications will write directly to the offline
databases although this data will not be forwarded to the online database.

6 Performance related aspects

POOL comes with an in-memory object cache which has a lifespan of an
application session which means if one object is requested more than once in
the same session, only the first request triggers a database transaction.

In the case of different processes asking for the same objects concurrently
to the same database server, one would benefit in read-only operations if there
were a secondary cache between the application and the database server.

6

From the database schema standpoint, one can tune the schema by choos-
ing different mapping rules. From the server side, indexes can be added to
the schema once the access pattern of an object or an object graph is well-
understood and the bottom-neck of the database access is clearly identified.

From the database connectivity layer RAL, both CMS and ATLAS has
been making studies of POOL-RAL performance overhead over the raw
database connectivity, so far these studies haven’t reported worrying per-
formance problem caused by the RAL layer neither in writing nor in reading.

7 Database deployment and maintenance

7.1 Database backends and deployment

In the overall POOL architecture, POOL-ORA is a layer on top of the POOL-
RAL (Relational Abstract Layer) which is a SQL-free abstract layer to hide
different RDBMS technologies from the user. Currently, POOL-RAL sup-
ports both native OCI binding to the Oracle database, native binding to sqlite
database, as well as the generic ODBC connectivity to all the RDBMS back-
ends(including ORACLE) which can be connected through ODBC drivers.
The ORM mapping files do not expose any SQL syntax, thus are technology
neutral. Therefore, POOL-ORA is a RDBMS technology neutral persistency
solution.

There is consensus that ORACLE database requires much steeper learn-
ing curve than other RDBMS for maintenance and management. Since
POOL-ORA is technology neutral, this flexibility allows the deployment of
the offline conditions and alignment database in other technologies, such
as mysql, sqlite,etc for smaller and/or local sites while the database back-
end differences are completely hidden from the application software. In the
meantime, the data can be transfered between the different database back-
ends using POOL-RAL.

7.2 DBA tasks

As described above, the POOL-ORA approach follows the “top-down” de-
velopment process, i.e. object model driven. There is not only no need for
explicit ORACLE schema design nor is there for other RDBMS. Data can be

7

transfered between databases transparently through POOL-RAL. Such a sys-
tem requires much less database maintenance effort with respect to a system
developed from “bottom-up”, which is database schema driven, particularly
if more than one RDBMS technology is desired.

Nevertheless, POOL-ORA uses databases, inevitably there are database
maintenance and DBA issues. These tasks are decided by the database de-
ployment model which therefore should be defined by the CMS comput-
ing model together with the LCG Distributed Database Deployment(3D)
project[4]. The POOL-ORA approach itself requires almost no database de-
sign and maintenance tasks.

There are two distinct DBA roles as in any database project maintenance:

• Basic, mission-critical DBA role

Each tier will have DBA experts working with the LCG 3D Project to
determine what tables will be replicated and how this will be accom-
plished, for example using Oracle Streams for the major sites (Tier 0,
Tier 1 and possibly some Tier 2).

CERN IT database service group will provide fundamental DBA skills
for setup, maintenance and backup of high-availability ORACLE servers
for the CMS Tier 0. It is assumed that the same basic services will be
provided at each large site with the explicit assumption that these
sites’ DBAs will work in a coordinated effort to ensure the integrity
and availability of the conditions and calibration data.

• Developer DBA role

This role provides DBA intelligence and rationale for design of the
database by monitoring client and server performance of a database
application and help the software developer to locate flaws in the design.

Take POOL-ORA application for example, if one application is re-
ported not to fulfill the performance requirement, the developer DBA
should analyze the database access pattern, client-server traffic etc and
come up with a recommendation, e.g. change mapping rules or switch
on secondary caching for a particular object or a graph of objects.

8

Appendix

class AlignTransform {

public:

typedef CLHEP::HepEulerAngles EulerAngles;

typedef CLHEP::Hep3Vector ThreeVector;

typedef CLHEP::HepRotation Rotation;

typedef ThreeVector Translation;

AlignTransform();

AlignTransform(const Translation & itranslation,

const EulerAngles & ieulerAngles);

AlignTransform(const Translation & itranslation,

const Rotation & irotation);

const Translation & translation() const;

const EulerAngles & eulerAngles() const;

Rotation rotation() const;

private:

Translation m_translation;

EulerAngles m_eulerAngles;

};

class Alignments {

public:

Alignments();

virtual ~Alignments();

std::vector<AlignTransform> m_align;

};

class Geom2Index {

public:

typedef int GeomId;

typedef int Index;

typedef std::map<GeomId,Index> IndexTable;

typedef std::vector<GeomId> GeomIdTable;

Geom2Index();

9

virtual ~Geom2Index();

IndexTable m_indexTable;

GeomIdTable m_GeomIdTable;

};

class BaseCalib {

public:

virtual ~BaseCalib();

};

class Pedestals : public BaseCalib {

public:

struct Item {

Item(){}

float m_mean;

float m_variance;

};

typedef int ElectronicsId;

typedef std::vector<Item>::const_iterator ItemIterator;

typedef std::pair<ItemIterator,ItemIterator> ItemRange;

typedef std::map<ElectronicsId,std::vector<Item> > Map;

typedef Map::const_iterator MapIterator;

Pedestals();

ItemRange get(ElectronicsId id) const;

std::map<ElectronicsId,std::vector<Item> > m_pedestals;

};

class Geom2Electronics : public BaseCalib {

public:

typedef int GeomId;

typedef int ElectronicsId;

typedef std::map<GeomId,ElectronicsId> Table;

typedef Table::const_iterator TableIterator;

10

Geom2Electronics();

ElectronicsId operator[](GeomId id) const;

const std::map<GeomId,ElectronicsId> & lookupTable() const;

std::map<GeomId,ElectronicsId> m_lookupTable;

};

References

[1] http://pool.cern.ch

[2] http://seal.cern.ch

[3] Ambler, Scott, 2002. “Mapping Objects to Relational Databases”.
AmbySoft Inc. white paper. www.ambysoft.com/mappingObjects.html.

[4] http://lcg3d.cern.ch

11

